Abstract
The paper is devoted to the identification of stochastic loads applied to a non-linear dynamical system for which experimental dynamical responses are available. The identification of the stochastic load is performed using a simplified computational non-linear dynamical model containing both model uncertainties and data uncertainties. Uncertainties are taken into account in the context of the probability theory. The stochastic load which has to be identified is modelled by a stationary non-Gaussian stochastic process for which the matrix-valued spectral density function is uncertain and is then modelled by a matrix-valued random function. The parameters to be identified are the mean value of the random matrix-valued spectral density function and its dispersion parameter. The identification problem is formulated as two optimization problems using the computational stochastic model and experimental responses. A validation of the theory proposed is presented in the context of tubes bundles in Pressurized Water Reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.