Abstract

Crop yield gains are needed to keep pace with a growing global population and decreasing resources to produce food. Cultivated emmer wheat is a progenitor of durum wheat and a useful source of genetic variation for trait improvement in durum. Here, we evaluated a recombinant inbred line population derived from a cross between the North Dakota durum wheat variety Divide and the cultivated emmer wheat accession PI 272527 consisting of 219 lines. The population was evaluated in 3 field environments and 2 greenhouse experiments to identify quantitative trait locus associated with 11 yield-related traits that were expressed in a consistent manner over multiple environments. We identified 27 quantitative trait locus expressed in at least 2 field environments, 17 of which were also expressed under greenhouse conditions. Seven quantitative trait locus regions on chromosomes 1B, 2A, 2B, 3A, 3B, 6A, and 7B had pleiotropic effects on multiple yield-related traits. The previously cloned genes Q and FT-B1, which are known to be associated with development and morphology, were found to consistently be associated with multiple traits across environments. PI 272527 contributed beneficial alleles for quantitative trait locus associated with multiple traits, especially for seed morphology quantitative trait locus on chromosomes 1B, 2B, and 6A. Three recombinant inbred lines with increased grain size and weight compared to Divide were identified and demonstrated the potential for improvement of durum wheat through deployment of beneficial alleles from the cultivated emmer parent. The findings from this study provide knowledge regarding stable and robust quantitative trait locus that breeders can use for improving yield in durum wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call