Abstract

Simple SummaryOesophageal adenocarcinoma (OAC) is a leading cause of cancer mortality in the United Kingdom with a 5-year survival rate of approximately 15%. Major contributors to poor outcome are late diagnosis and chemotherapy resistance, and while targeted therapies have benefitted certain cancer settings, they have had limited success in OAC. An understanding of the mechanisms mediating chemotherapy resistance could identify novel targets with the potential to improve standard treatments. This paper aimed to identify mediators of both OAC cancer cell pro-survival signalling and chemotherapy resistance, as well as determine potential small molecular compounds to counteract this. Gene set enrichment analysis of transcriptional data generated a gene-list with significant differential expression between responder and non-responder OAC patients. Gene functionality assessment using siRNA screening showed that targeting SRC had an anti-tumour effect in OAC cells with the potential to enhance chemotherapy treatment. In parallel to this, a compound screen showed the Src inihibitor dasatinib sensitised OAC cells to chemotherapy. Together, these findings suggest targeting SRC as a novel therapeutic strategy in OAC.Drug resistance limits the effectiveness of oesophageal adenocarcinoma (OAC) chemotherapies, leading to a poor prognosis for this disease. Elucidation of the underlying resistance mechanisms is key to enabling the identification of more effective treatments. This study, therefore, aims to identify novel therapeutic and/or chemotherapy sensitising drug targets in OAC. Transcriptional data from a cohort of 273 pre-treatment OAC biopsies, from patients who received neoadjuvant chemotherapy followed by surgical resection, were analysed using gene set enrichment analysis (GSEA) to determine differential gene expression between responding and non-responding OAC tumours. From this, 80 genes were selected for high-throughput siRNA screening in OAC cell lines with or without standard chemotherapy treatment. In parallel, cell viability assays were performed using a panel of FDA-approved drugs and combination index (CI) values were calculated to evaluate drug synergy with standard chemotherapy. Mechanisms of synergy were investigated using western blot, propidium iodide flow cytometry, and proliferation assays. Taken together, the screens identified that targeting Src, using either siRNA or the small molecule inhibitor dasatinib, enhanced the efficacy of chemotherapy in OAC cells. Further in vitro functional analysis confirmed Src inhibition to be synergistic with standard OAC chemotherapies, 5-fluorouracil (5-FU), and cisplatin (CDDP). In conclusion, a compound screen together with a functional genomic approach identified Src as a potential chemosensitising target in OAC, which could be assessed in a clinical study for poor prognosis OAC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call