Abstract

Genome sequence analysis of seven different Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) isolates that differed in insecticidal phenotype permitted the identification of genes likely to be involved in pathogenicity of occlusion bodies (OBs) and speed of kill (virulence) of this virus: se4 (hoar), se5 (unknown function), se28 (unknown function), se76 (cg30), se87 (p26) and se129 (p26). To study the role of these genes experimentally on the insecticidal phenotype, a bacmid-based recombination system was constructed to delete selected genes from a SeMNPV isolate, VT-SeAL1, designated as SeBacAL1. All of the knockout viruses were viable and the repair viruses behaved like the wild-type control, vSeBacAL1. Deletion of se4, se5, se76 and se129 resulted in decreased OB pathogenicity compared to vSeBacAL1 OBs. In contrast, deletion of se87 did not significantly affect OB pathogenicity, whereas deletion of se28 resulted in significantly increased OB pathogenicity. Deletion of se4, se28, se76, se87 and se129 did not affect speed of kill compared to the bacmid vSeBacAL1, whereas speed of kill was significantly extended following deletion of se5 and in the wild-type isolate (SeAL1), compared to that of the bacmid. Therefore, biological assays confirmed that several genes had effects on virus insecticidal phenotype. Se5 is an attractive candidate gene for further studies, as it affects both biological parameters of this important biocontrol virus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.