Abstract

G-box-binding factors are plant transcription factors, involved in a wide range of biological processes including abiotic stress responses. In this study, we analyzed the expression of OsGBF1 during salt stress in two contrasting Oryza sativa spp. indica genotypes, Rasi and Tellahamsa. Two-day-old seedlings were exposed to NaCl stress under two different conditions. One set was exposed to 100mM NaCl before transferring to 250mM (induction stress), while another set was transferred directly to 250mM (shock stress). During early induction stress, OsGBF1 was up-regulated in Rasi when compared to Tellahamsa. We cloned full-length OsGBF1 from these two genotypes, and analyzed the sequences. Our analysis indicated the presence of transcript variants, which are designated as OsGBF1a and 1b. OsGBF1b variant retained introns, which lead to the generation of premature termination codon. OsGBF1b transcript levels were not significantly different at 12-h of induction stress in Tellahamsa and Rasi. At 24-h of shock stress, OsGBF1b was up-regulated in both genotypes and the transcript was more in Rasi. Since, OsGBF1a and 1b are predicted to be splice variants, we examined expression pattern of OsSKIP, a splicing factor and component of the spliceosome. In induction stress, OsSKIP was up-regulated at 12- and 24-h in Rasi when compared to Tellahamsa. On the contrary, at 24-h shock stress, OsSKIP was down-regulated in Rasi when compared to Tellahamsa. It is possible that OsSKIP expression was increased in Rasi during induction stress for accurate splicing that could aid in tolerance. This is the first report on OsGBF1 splice variant and the variant could have specific functions linked to stress tolerance in rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.