Abstract
In this paper we use a state-space model with Markov-switching to detect speculative bubbles in stock-price data. To this end we express a present-value stock-price model in state-space form which we estimate using the Kalman filter. This procedure enables us to estimate a two-regime Markov-switching specification of the unobservable bubble process. The respective Markov-regimes represent two distinct phases in the bubble process, namely one in which the bubble survives and one in which it collapses. We ultimately identify bursting stock-price bubbles by statistically separating both Markov-regimes from each other. In an empirical analysis we apply our methodology to a plethora of artificial and real-world data sets. Our study has two major findings. First, we find significant Markov-switching structures in real-world stock-price bubbles. Second, in the stock markets considered our identification procedure correctly detects most speculative periods which have been classified as such by economic historians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.