Abstract

This work reports the utilization of an in vivo expression technology system to identify in vivo-induced (ivi) genes in Yersinia ruckeri after determination of the conditions needed for its selection in fish. Fourteen clones were selected, and the cloned DNA fragments were analyzed after partial sequencing. In addition to sequences with no significant similarity, homology with genes encoding proteins putatively involved in two-component and type IV secretion systems, adherence, specific metabolic functions, and others were found. Among these sequences, four were involved in iron acquisition through a catechol siderophore (ruckerbactin). Thus, unlike other pathogenic yersiniae producing yersiniabactin, Y. ruckeri might be able to produce and utilize only this phenolate. The genetic organization of the ruckerbactin biosynthetic and uptake loci was similar to that of the Escherichia coli enterobactin gene cluster. Genes rucC and rupG, putative counterparts of E. coli entC and fepG, respectively, involved in the biosynthesis and transport of the iron siderophore complex, respectively, were analyzed further. Thus, regulation of expression by iron and temperature and their presence in other Y. ruckeri siderophore-producing strains were confirmed for these two loci. Moreover, 50% lethal dose values 100-fold higher than those of the wild-type strain were obtained with the rucC isogenic mutant, showing the importance of ruckerbactin in the pathogenesis caused by this microorganism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.