Abstract

Cucumber necrosis virus (CNV) is naturally transmitted in the soil by zoospores of the fungal vector Olpidium bornovanus. Successful transmission requires that virus particles attach to the surface of zoospores prior to zoospore encystment on host roots. Mechanically passaged CNV was screened for mutants deficient in fungus transmission. We found six such mutants, exhibiting transmission efficiencies ranging from approximately 14 to 76% of that of wild-type (WT) CNV. Results of in vitro virus-zoospore binding assays show that each mutant binds to zoospores less efficiently than WT CNV (21 to 68%), suggesting that defects in transmission for these mutants are at least partially due to inefficient zoospore binding. Analysis of the structure of the CNV coat protein subunit and trimer indicates that affected amino acids in all of the mutants are located in the shell or protruding domain and that five of six of them are potentially exposed on the surface of the virus particle. In addition, several of the mutated sites, along with a previously identified site in a region of subunit-subunit interaction in the coat protein shell domain (M. A. Robbins, R. D. Reade, and D. M. Rochon, Virology 234:138-146, 1997), are located on the particle quasi-threefold axis, suggesting that this region of the capsid may be important in recognition of a putative zoospore receptor. The individual sites may directly affect attachment to a receptor or could indirectly affect attachment via changes in virion conformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call