Abstract

We recently reported that adenine acts as a neurotrophic factor independent of adenosine or P2 receptors in cultured Purkinje cells [Watanabe S. et al. (2003) J. Neurosci. Res. 74, 754-759], suggesting the presence of specific receptors for adenine in the brain. In this study, the characterization of adenine-binding activity in the rat brain was performed to further characterize the receptor-like adenine-binding sites. Specific binding sites for [(3)H]adenine were detected in membrane fractions prepared from rat brains. The kinetics of [(3)H]adenine binding to membranes was described by the association and dissociation rate constants, 8.6 x 10(5) M(-1) min(-1) and 0.118 +/- 0.045 min(-1), respectively. A single binding site for [(3)H]adenine with a K (D) of 157.1 +/- 20.8 nM and a B (max) of 16.3 +/- 1.1 pmol/mg protein (n = 6) was demonstrated in saturation experiments. A displacement study involving various related compounds showed that the [(3)H]adenine binding was highly specific for adenine. It was also found that [(3)H]adenine-binding activity was inhibited by adenosine, although other adenosine receptor ligands were ineffective as to [(3)H]adenine binding. The brain, especially the cerebellum and spinal cord, showed the highest [(3)H]adenine-binding activity of the tissues examined. These results are consistent with the presence of a novel adenine receptor in rat brain membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.