Abstract
The stability of monoclonal antibodies (mAbs) is vital for their therapeutic success. Sorbitol, a common mAb stabilizer used to prevent aggregation, was evaluated for any potential adverse effects on the chemical stability of mAb X. An LC-MS/MS based analysis focusing on the post-translational modifications (PTMs) of mAb X was conducted on samples that had undergone accelerated aging at 40°C. Along with PTMs that are known to affect mAbs' structure function and stability (such as deamidation and oxidation), a novel mAb PTM was discovered, the esterification of glutamic acid by sorbitol. Incubation of mAb X with a 1:1 ratio of unlabeled sorbitol and isotopically labeled sorbitol (13C6) further corroborated that the modification was the consequence of the esterification of glutamic acid by sorbitol. Levels of esterification varied across glutamic acid residues and correlated with incubation time and sorbitol concentration. After 4 weeks of accelerated stability with isotopically labeled sorbitol, it was found that 16% of the total mAb possesses an esterified glutamic acid. No esterification was observed at aspartic acid sites despite the free carboxylic acid side chain. This study unveils a unique modification of mAbs, emphasizing its potential significance for formulation and drug development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.