Abstract

The plant species Ipomoea aquatica contains various bioactive constituents, e.g. phenols and flavonoids, which have several medical uses. All previous studies were executed in Asia; however, no reports are available from Africa, and the secondary metabolites of this plant species from Africa are still unknown. The present study aims finding suitable conditions to identify the bioactive compounds from different fractions. Chromatographic fingerprint profiles of different fractions were developed using high-performance liquid chromatography (HPLC) and then these conditions were transferred to thin-layer chromatography (TLC). Subsequently, the chemical structure of some bioactive compounds was elucidated using ultra-performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry (UPLC-QTOF-MS) and liquid chromatography-solid phase extraction-nuclear magnetic resonance (LC-SPE-NMR) spectroscopy. The HPLC fingerprints, developed on two coupled Chromolith RP-18e columns, using a gradient mobile phase (methanol/water/trifluoroacetic acid, 5:95:0.05, v/v/v), showed more peaks than the TLC profile. The TLC fingerprint allows the identification of the types of chemical constituents, e.g. flavonoids. Two flavonoids (nicotiflorin and ramnazin-3-O-rutinoside) and two phenolic compounds (dihydroxybenzoic acid pentoside and di-pentoside) were tentatively identified by QTOF-MS, while NMR confirmed the structure of rutin and nicotiflorin. The HPLC and TLC results showed that HPLC fingerprints give more and better separated peaks, but TLC helped in determining the class of the active compounds in some fractions. Bioactive constituents were identified as well using MS and NMR analyses. Two flavonoids and two phenolic compounds were tentatively identified in this species for the first time, to the best of our knowledge. Copyright © 2017 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.