Abstract
Abstract. Polarimetric radar systems are commonly used to study the microphysics of precipitation. While they offer continuous measurements with a large spatial coverage, retrieving information about the microphysical processes that govern the evolution of snowfall from the polarimetric signal is challenging. The present study develops a new method, called process identification based on vertical gradient signs (PIVSs), to spatially identify the occurrence of the main microphysical processes (aggregation and riming, crystal growth by vapor deposition and sublimation) in snowfall from dual-polarization Doppler radar scans. We first derive an analytical framework to assess in which meteorological conditions the local vertical gradients of radar variables reliably inform about microphysical processes. In such conditions, we then identify regions dominated by (i) vapor deposition, (ii) aggregation and riming and (iii) snowflake sublimation and possibly snowflake breakup, based on the sign of the local vertical gradients of the reflectivity ZH and the differential reflectivity ZDR. The method is then applied to data from two frontal snowfall events, namely one in coastal Adélie Land, Antarctica, and one in the Taebaek Mountains in South Korea. The validity of the method is assessed by comparing its outcome with snowflake observations, using a multi-angle snowflake camera, and with the output of a hydrometeor classification, based on polarimetric radar signal. The application of the method further makes it possible to better characterize and understand how snowfall forms, grows and decays in two different geographical and meteorological contexts. In particular, we are able to automatically derive and discuss the altitude and thickness of the layers where each process prevails for both case studies. We infer some microphysical characteristics in terms of radar variables from statistical analysis of the method output (e.g., ZH and ZDR distribution for each process). We, finally, highlight the potential for extensive application to cold precipitation events in different meteorological contexts.
Highlights
The characterization and modeling of snowfall necessitate a thorough understanding of the dynamical and microphysical processes driving snowflakes growth and evolution from the synoptic to the microscale (e.g., Ryzhkov and Zrnic, 2019; Morrison et al, 2020)
We can introduce the so-called process identification based on vertical gradient signs (PIVSs) method to identify the occurrence of microphysical processes in snowfall from the vertical gradients of polarimetric radar variables
This study presents the development and application of a new method named PIVSs to automatically detect the occurrence of microphysical processes controlling snowfall growth and evolution from dual-polarization Doppler radar scans
Summary
The characterization and modeling of snowfall necessitate a thorough understanding of the dynamical and microphysical processes driving snowflakes growth and evolution from the synoptic to the microscale (e.g., Ryzhkov and Zrnic, 2019; Morrison et al, 2020). Strong wind shear leads to slanted streamlines of snowflakes, thereby manifesting as clear fall streaks in RHI scans or time–height plots In such cases, the shape of the vertical profiles of radar variables strongly depends upon advection mechanisms and on microphysics. A preliminary step consists of developing an analytical framework to theoretically determine the conditions in which the vertical (Eulerian) analysis of polarimetric radar signal provides robust information about snowfall microphysics. This method is illustrated over two case studies to identify and characterize the microphysical processes at play, i.e., one case at Dumont d’Urville (DDU) station, Adélie Land, Antarctica, and one case in the Taebaek Mountains, South Korea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.