Abstract

The Holliday junction (HJ) branch migrator RuvAB complex plays a fundamental role during homologous recombination and DNA damage repair, and therefore, is an attractive target for the treatment of bacterial pathogens. Pseudomonas aeruginosa (P. aeruginosa, Pa) is one of the most common clinical opportunistic bacterial pathogens, which can cause a series of life-threatening acute or chronic infections. Here, we performed a high throughput small-molecule screening targeting PaRuvAB using the FRET-based HJ branch migration assay. We identified that corilagin, bardoxolone methyl (BM) and 10-(6ˊ-plastoquinonyl) decyltriphenylphosphonium (SKQ1) could efficiently inhibit the branch migration activity of PaRuvAB, with IC50 values of 0.40 ± 0.04 μM, 0.38 ± 0.05 μM and 4.64 ± 0.27 μM, respectively. Further biochemical and molecular docking analyses demonstrated that corilagin directly bound to PaRuvB at the ATPase domain, and thus prevented ATP hydrolysis. In contrast, BM and SKQ1 acted through blocking the interactions between PaRuvA and HJ DNA. Finally, these compounds were shown to increase the susceptibility of P. aeruginosa to UV-C irradiation. Our work, for the first time, reports the small-molecule inhibitors of RuvA and RuvB from any species, providing valuable chemical tools to dissect the functional role of each individual protein in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.