Abstract

Advanced identification of the potential sliding surface of a slope and accurate early warning are crucial prerequisites for effective management of landslides and timely and prevention of catastrophic accidents. This study analyzes the statistical characteristics of landslide displacement evolution. Based on the normal distribution theory, random variables of displacement velocity and acceleration with random errors are introduced into the analysis of surface displacement information, and random variables of relative displacement with random errors are introduced into the analysis of deep displacement information. When the random variables do not follow the normal distribution, the warning time can be obtained. Therefore, an advanced landslide classification warning method is established. The analysis results showed that analysis results from the April 30 landslide project at an open pit mine indicate that the earliest warning time for landslide initiation is 2020/2/19, while the earliest warnings for acceleration occur on 2020/4/15 and the fast acceleration on 2020/4/25. These three-level warning times align with reality, and the inferred slip surface position corresponds to the actual weak layer range. The primary power source driving landslide originates from behind the sliding body which subsequently pushes rock mass along weak layers near the south wing, north wing, and front in succession. Research findings can enhance landslide warning accuracy, facilitate advance identification of sliding surface, provide scientific basis for open-pit slope engineering design, as well as mitigate casualties and property losses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.