Abstract

In this work, we developed a simple and accurate peptide nucleic acid (PNA)-based sandwich hybridization assay for single nucleotide polymorphisms (SNPs) in the p53 gene. Our approach combines the enzyme-free toehold-mediated strand displacement reaction (SDR) with real-time enzyme-linked immunosorbent assay (ELISA) to detect SNPs with high sensitivity and specificity. A PNA-DNA heteroduplex with an external toehold is designed and fixed on well surface of a 96-well plate. The strand displacement from PNA-DNA heteroduplexes is initiated by the hybridization of target sequence with the toehold domain and ends with the fully displacing of the incumbent DNA. Finally, the as formed PNA-target DNA duplex with overhang at its 5′-end hybridizes with a biotin-labeled reporter PNA to form a sandwich structure on surface for signal amplification. The proposed PNA-based sandwich biosensor displays high sensitivity and greatly enhanced discriminability to target p53 gene segments against single-base mutant sequences compared to its all-DNA counterpart. Furthermore, the probe design is elegantly simple and the sensing procedure is easy to operate. We believe that this strategy may provide a simple and universal strategy for SNPs detection through easily altering the sequences of probes according to the sequences around target SNPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.