Abstract
This study aimed to identify biomarkers for chronic kidney disease (CKD) by studying serum metabolomics. Serum samples were collected from 194 non-dialysis CKD patients and 317 healthy controls (HC). Using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS), untargeted metabolomics analysis was conducted. A random forest model was developed and validated in separate sets of HC and CKD patients. The serum metabolomic profiles of patients with chronic kidney disease (CKD) exhibited significant differences compared to healthy controls (HC). A total of 314 metabolites were identified as significantly different, with 179 being upregulated and 135 being downregulated in CKD patients. KEGG enrichment analysis revealed several key pathways, including arginine biosynthesis, phenylalanine metabolism, linoleic acid metabolism, and purine metabolism. The diagnostic efficacy of the classifier was high, with an area under the curve of 1 in the training and validation sets and 0.9435 in the cross-validation set. This study provides comprehensive insights into serum metabolism in non-dialysis CKD patients, highlighting the potential involvement of abnormal biological metabolism in CKD pathogenesis. Exploring metabolites may offer new possibilities for the management of CKD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.