Abstract

The URA7-encoded CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] in the yeast Saccharomyces cerevisiae is phosphorylated on a serine residue and stimulated by cAMP-dependent protein kinase (protein kinase A) in vitro. In vivo, the phosphorylation of CTP synthetase is mediated by the RAS/cAMP pathway. In this work, we examined the hypothesis that amino acid residue Ser424 contained in a protein kinase A sequence motif in the URA7-encoded CTP synthetase is the target site for protein kinase A. A CTP synthetase synthetic peptide (SLGRKDSHSA) containing the protein kinase A motif was a substrate (Km = 30 microM) for protein kinase A. This peptide also inhibited (IC50 = 45 microM) the phosphorylation of purified wild-type CTP synthetase by protein kinase A. CTP synthetase with a Ser424 --> Ala (S424A) mutation was constructed by site-directed mutagenesis. The mutated enzyme was not phosphorylated in response to the activation of protein kinase A activity in vivo. Purified S424A mutant CTP synthetase was not phosphorylated and stimulated by protein kinase A. The S424A mutant CTP synthetase had reduced Vmax and elevated Km values for ATP and UTP when compared with the protein kinase A-phosphorylated wild-type enzyme. The specificity constants for ATP and UTP for the S424A mutant CTP synthetase were 4.2- and 2.9-fold lower, respectively, when compared with that of the phosphorylated enzyme. In addition, the S424A mutant enzyme was 2.7-fold more sensitive to CTP product inhibition when compared with the phosphorylated wild-type enzyme. These data indicated that the protein kinase A target site in CTP synthetase was Ser424 and that the phosphorylation of this site played a role in the regulation of CTP synthetase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.