Abstract

A Geographical Information System (GIS) based method is proposed and demonstrated for the identification of sediment source and sink areas and the prediction of sediment yield from catchments. Data from the Haharo sub-catchment having an area of 565 Km2 in the Upper Damodar Valley in Jharkhand State in India was taken up for the present study due to availability of gauged data at multiple locations within catchment area. The catchment was discretized into hydrologically homogeneous grid cells to capture the catchment heterogeneity. The cells thus formed were then differentiated into cells of overland flow regions and cells of channel flow regions based on the magnitude of their flow accumulation areas. The gross soil erosion in each cell was calculated using the Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of transport limited sediment delivery (TLSD) was formulated and used in ArcGIS for generating the transport capacity maps. An empirical relation is proposed and demonstrated for its usefulness for computation of land vegetation dependent transport capacity factor used in TLSD approach by linking it with normalized difference vegetation index (NDVI) derived from satellite data. Using these maps, the gross soil erosion was routed to the catchment outlet using hydrological drainage paths, for derivation of transport capacity limited sediment outflow maps. These maps depict the amount of sediment rate from a particular grid in spatial domain and the pixel value of the outlet grid indicates the sediment yield at the outlet of the catchment. Up on testing, the proposed method simulated the annual sediment yield with less than 40% error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.