Abstract
Traditional visual diet analysis techniques were compared with DNA barcoding in juvenile herbivorous rabbitfish Siganus fuscescens collected in Moreton Bay, Australia, where at least six species of seagrass occur. The intergenic spacer trnH-psbA, suggested as the optimal gene for barcoding angiosperms, was used for the first time to identify the seagrass in fish guts. Four seagrass species and one alga were identified visually from gut contents; however, there was considerable uncertainty in visual identification with 38 of 40 fish having unidentifiable plant fragments in their gut. PCR and single-strand conformational polymorphism (SSCP) were able to discriminate three seagrass families from visually cryptic gut contents. While effective in identifying cryptic gut content to family level, this novel method is likely to be most efficient when paired with visual identification techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.