Abstract
MARCH11, a RING-finger transmembrane ubiquitin ligase, is predominantly expressed in spermatids and localized to the trans-Golgi network (TGN) and multivesicular bodies (MVBs). Because ubiquitination acts as a sorting signal of cargo proteins, MARCH11 has been postulated to mediate selective protein sorting via the TGN-MVB pathway. However, the physiological substrate of MARCH11 has not been identified. In this study, we have identified and characterized SAMT1, a member of a novel 4-transmembrane protein family, which consists of four members. Samt1 mRNA and its expression product were found to be specific to the testis and were first detected in germ cells 25days after birth in mice. Immunohistochemical analysis further revealed that SAMT1 was specifically expressed in haploid spermatids during the cap and acrosome phases. Confocal microscopic analysis showed that SAMT1 co-localized with MARCH11 as well as with fucose-containing glycoproteins, another TGN/MVB marker, and LAPM2, a late endosome/lysosome marker. Furthermore, we found that MARCH11 could increase the ubiquitination of SAMT1 and enhance its lysosomal delivery and degradation in an E3 ligase activity-dependent manner. In addition, the C-terminal region of SAMT1 was indispensable for its ubiquitination and proper localization. The other member proteins of the SAMT family also showed similar expression profile, intracellular localization, and biochemical properties, including ubiquitination by MARCH11. These results suggest that SAMT family proteins are physiological substrates of MARCH11 and are delivered to lysosomes through the TGN-MVB pathway by a ubiquitin-dependent sorting system in mouse spermatids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.