Abstract

BackgroundSalinity is one of the major limiting abiotic stresses that decrease crop production worldwide. To recommend genotypes for cultivation under saline stress conditions, a comprehensive understanding of the genetic basis and plant responses to this stress is needed. In the present study, a total of 20 barley genotypes were investigated to identify potential salt-tolerant genotypes, both at the early growth stage using a hydroponic system, and in adult plants under field conditions. For these purposes, the multi-trait genotype-ideotype distance index (MGIDI) was used to identify salt-tolerant barley genotypes at the seedling stage, and the weighted average of absolute scores (WAASB) index was used to identify the high-yielding and stable genotypes in adult plant stage. At the early growth stage, barley seedlings were treated with two salinity levels: 0 mM NaCl (as control conditions) and 200 mM NaCl (as stress conditions) for 30 days, and during this period different growth and physiological traits were measured. Besides, the yield performance and stability of the investigated barley genotypes were evaluated across five environments during the 2018–2020 cropping seasons.ResultsSalinity stress significantly decreased growth and physiological traits in all seedling plants; however, some salt-tolerant genotypes showed minimal reduction in the measured traits. Multivariate analysis grouped the measured traits and genotypes into different clusters. In the early growth stage, the G12, G14, G6, G7, and G16 were selected as the most salt-tolerant genotypes using MGIDI index. In the multi-environment trials experiment, AMMI analysis showed that grain yields of the tested barley genotypes were influenced by the environment (E), genotype (G), and GE interaction. Based on the weighted average of absolute scores of the genotype index (WAASB) and other stability statistics, G7, G8, G14, and G16 were selected as superior genotypes.ConclusionTogether the MGIDI and WAASB indices revealed that three genotypes—G7, G14 and G16—can be recommended as new genetic resources for improving and stabilizing grain yield in barley programs for the moderate climate and saline regions of Iran. Our results suggest that using the MGIDI index in the early growth stage can accelerate screening nurseries in barley breeding programs. Besides, the WAASB index can be used as a useful stability measurement for identify high-yielding and stable genotypes in multi-environment trials.

Highlights

  • Salinity is one of the major limiting abiotic stresses that decrease crop production worldwide

  • Root and shoot features The results of the combined analysis of variance (ANOVA) showed that the effect of salinity was highly significant for root and shoot fresh weights (RFW and Shoot fresh weight (SFW), respectively) (P < 0.0001) as well as root and shoot dry weights (RDW and Shoot dry weight (SDW), respectively) (P < 0.001)

  • Close attention should be paid to genotypes that are very close to the cut-off point (Olivoto and Nardino 2020). As another result from this analysis, we found that some physiological traits including membrane stability index (MSI), Relative water content (RWC), SFW, Stomatal conductance (GS), PK, Shoot K+ content (SK), Root K+ (RKN), Shoot ­Na+ content (SN), Root ­Na+ content (RN), and Root-to-shoot Na+ translocation (RTSN) have a high broad-sense heritability, indicating that they deserve attention in future studies aimed at screening tolerant genotypes at the early growth stage (Table 2)

Read more

Summary

Introduction

Salinity is one of the major limiting abiotic stresses that decrease crop production worldwide. A total of 20 barley genotypes were investi‐ gated to identify potential salt-tolerant genotypes, both at the early growth stage using a hydroponic system, and in adult plants under field conditions. Based on the Stanford Iran 2040 Project’s report, many parts of Iran are located in an arid area with more than 70% annual aridity index (Emadi 2018) Vast areas of this country will face serious problems associated with soil salinization in the near future. Motivating the development of salt tolerant varieties of crop plants to help agricultural productivity

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call