Abstract

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening clinical conditions predominantly arising from uncontrolled inflammatory reactions. It has been found that the administration of astaxanthin (AST) can exert protective effects against lipopolysaccharide (LPS)-induced ALI; however, the robust genetic signatures underlying LPS induction and AST treatment remain obscure. Here we performed a statistical meta-analysis of five publicly available gene expression datasets from LPS-induced ALI mouse models, conducted RNA-sequencing (RNA-seq) to screen differentially expressed genes (DEGs) in response to LPS administration and AST treatment, and integrative analysis to determine robust genetic signatures associated with LPS-induced ALI onset and AST administration. Both the meta-analyses and our experimental data identified a total of 198 DEGs in response to LPS administration, and 11 core DEGs (Timp1, Ly6i, Cxcl13, Irf7, Cxcl5, Ccl7, Isg15, Saa3, Saa1, Tgtp1, and Gbp11) were identified to be associated with AST therapeutic effects. Further, the 11 core DEGs were verified by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC), and functional enrichment analysis revealed that these genes are primarily associated with neutrophils and chemokines. Collectively, these findings unearthed the robust genetic signatures underlying LPS administration and the molecular targets of AST for ameliorating ALI/ARDS which provide directions for further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.