Abstract
ABSTRACT Background: The primary objective of this study is to identify non-laboratory predictors for 30-day hospital readmission and 180-day in-hospital mortality rates among patients hospitalized with ischemic heart disease (IHD). Research design and methods: This is a retrospective cohort study of hospitalized patients (≥ 40 years) with a primary diagnosis of IHD. Data were extracted from the Florida Agency for Health Care Administration dataset from 2006 to 2016. A machine learning approach was used to identify predictors of 30-day hospital readmission and 180-day in-hospital mortality. Results: 346,390 patient records for incident IHD cases were identified. The top two predictors of 30-day readmission were the length of stay and the Elixhauser comorbidity index for readmission [ECI] (Area Under the Curve [AUC]=88%) using decision tree algorithms. For in-hospital mortality, the top two predictors were LOS and ECI (AUC=92%) using gradient boosting regressors. The cumulative 30-day readmission and the 180-day probability of mortality rates were 9.82% and 4.6% respectively. Conclusions: Risk factors of 30-day readmission and 180-day mortality in hospitalized IHD patients identified by machine learning and their relative importance (value) will help pharmacists and other health care providers to prioritize their disease management strategies as they improve the care provided to IHD patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Expert Review of Pharmacoeconomics & Outcomes Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.