Abstract

In the paper results of investigations of rheological properties for selected PEO-water solutions are presented. On the basis of measurements, carried out with use of rotational viscosimeter values of shear stresses were determined in the relatively wide range of shear rates. Rheological curves were described by the Ostwald de Waele model (or so-called power-law). The model coefficients such as the fluid consistency coefficient k and the flow behavior index n were determined using Levenberg−Marquardt algorithm for nonlinear estimation. The influence of temperature on properties and behavior examined non-Newtonian fluids was also determined. Results were processed in the curve shift parameter at. Experiments shown a significant effect of poly(ethylene oxide) concentration cPEO on rheological properties of examined solutions. For the lowest concentration (cPEO=1.2%) solutions exhibited properties similar to Newtonian fluids with values of n close to 1. With increasing of PEO concentration in water (cPEO=2.4-4.8%), solutions exhibited properties as non - Newtonian fluids, pseudoplastic, without yield limit. In these cases values of n were below unity and for the highest concentration (cPEO=4.8%) belonged to the range of n=0.5694-0.7536, depending on the temperature. Results of investigations can be used during numerical simulations, design and optimization of industrial equipment, working with fluids of this kind, including mixing vessels, columns or heat exchangers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.