Abstract

In primates, the retinal ganglion cells contributing to high acuity spatial vision (midget cells and parasol cells), and blue-yellow color vision (small bistratified cells) are well understood. Many other ganglion cell types with large dendritic fields (named wide-field ganglion cells) have been identified, but their spatial density and distribution are largely unknown. Here we took advantage of the recently established molecular diversity of ganglion cells to study wide-field ganglion cell populations in three primate species. We used antibodies against the transcription factor Special AT-rich binding protein 2 (Satb2) to explore its expression in macaque (Macaca fascicularis, M. nemestrina), human and marmoset (Callithrix jacchus) retinas. In all three species, Satb2 cells make up a low proportion (1.5-4%) of the ganglion cell population, with a slight increase from central to peripheral retina. Intracellular dye injections revealed that in macaque and human retinas, the large majority (over 80%) of Satb2 cells are inner and outer stratifying large sparse cells. By contrast, in marmoset retina the majority (over 60%) of Satb2 expressing cells were broad thorny cells, with smaller proportions of recursive bistratified (putative direction-selective), large bistratified, and outer stratifying narrow thorny cells. Our findings imply that Satb2 expression has undergone rapid species specific adaptations during primate evolution, because expression is not conserved across Old World (macaque, human) and New World (marmoset) suborders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call