Abstract

This study applied RNA-seq technology to discover reproduction-related genes and pathways in female topmouth culter brain (including pituitary) and ovarian tissues. In functional analysis, 2479 and 2605 unigenes in the brain and ovary tissue were assigned to the "reproductive process" subcategory in addition to the 2660 and 2845 unigenes assigned to the "reproduction" subcategory. Twenty-three complete cDNA sequences were identified through the different gene expression (DGE) approach from five reproduction-related pathways (MAPK signaling pathway, neuroactive ligand-receptor interaction pathway, gonadotropin-releasing hormone signaling pathway, oocyte meiosis pathway, and steroid biosynthesis pathway). The expression levels of 16 candidate genes using qPCR in this study were in accordance with the results of transcriptome analysis. In addition, the expression levels of the FSH, 3β-HSD, PGR, and NPYR genes in malformed gynogenetic ovaries were considerably low, which was consistent with the progress of oocytogenesis in the ovaries of topmouth culter. The high expression of these four genes in the ovaries of normal topmouth culter suggested they might involve in the preparation for the shift of oogenesis to ovulation. Hence, our work identified a set of annotated gene products that are candidate factors affecting reproduction in the topmouth culter H-P-G axis. These results could be essential for further research in functional genomics and genetic editing for topmouth culter reproduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.