Abstract
The development of spaceborne remote sensing has greatly facilitated the land cover mapping at various spatial scales. Classification accuracy, however, is usually affected by the heterogeneous spectra of different land cover types for medium–low-spatial-resolution images. The study is aimed at improving the classification accuracy at a city scale by proposing a hierarchical classification method. Time-series Landsat-5 and Landsat-8 Operational Land Imager remote sensing images of 4 years were used as the classified images. A total of six first-class land cover types were determined, namely woodland, grassland, cropland, wetland, artificial surface and others. The object-based image analysis was chosen over pixel-based approaches. More specifically, the nearest-neighbor (NN) classification and SEparability and THresholds (SEaTH) algorithm were combined to produce a hierarchical classification method (NN-SEaTH). SEaTH algorithm was first used to extract the wetland after performing image segmentation in eCognition Developer. Then, the non-wetland was further classified to vegetation and non-vegetation by using a normalized difference vegetation index image. Finally, the other types were then obtained using the NN classification. To validate the proposed method, the NN classifier and NN-SEaTH method were compared. The proposed technique is shown to increase the overall accuracy (OA) and kappa coefficient (k) for the 4 years. The OA and k are, respectively, 96.46% and 0.9231, 96.63% and 0.9269, 96.88% and 0.9394, 95.22% and 0.9239 that are much larger than 88.13% and 0.7503, 88.83% and 0.7660, 88.64% and 0.7630, 87.33% and 0.7371 derived from the NN approach. The study provides a reference for medium-resolution-based land cover mapping by a hierarchical classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.