Abstract
Thirteen alleles (L, L1 to L11, and LH) from the flax L locus, which encode Toll/interleukin-1 receptor homology-nucleotide binding site-leucine-rich repeat (TIR-NBS-LRR) rust resistance proteins, were sequenced and compared to provide insight into their evolution and into the determinants of gene-for-gene resistance specificity. The predicted L6 and L11 proteins differ solely in the LRR region, whereas L6 and L7 differ solely in the TIR region. Thus, specificity differences between alleles can be determined by both the LRR and TIR regions. Functional analysis in transgenic plants of recombinant alleles constructed in vitro provided further information: L10-L2 and L6-L2 recombinants, encoding the LRR of L2, conferred L2 resistance specificity, and an L2-L10 recombinant, encoding the LRR of L10, conferred a novel specificity. The sequence comparisons also indicate that the evolution of L alleles has probably involved reassortment of variation, resulting from accumulated point mutations, by intragenic recombination. In addition, large deletion events have occurred in the LRR-encoding regions of L1 and L8, and duplication events have occurred in the LRR-encoding region of L2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.