Abstract

BackgroundBivalves comprise around 30,000 extant species and have received much attention for their importance in ecosystems, aquaculture and evolutionary studies. Despite the increasing application of real-time quantitative reverse transcription PCR (qRT-PCR) in gene expression studies on bivalve species, little research has been conducted on reference gene selection which is critical for reliable and accurate qRT-PCR analysis. For scallops, systematic evaluation of reference genes that can be used among tissues or embryo/larva stages is lacking, and β-actin (ACT) is most frequently used as qRT-PCR reference gene without validation.ResultsIn this study, 12 commonly used candidate reference genes were selected from the transcriptome data of Yesso scallop ( Patinopecten yessoensis ) for suitable qRT-PCR reference genes identification. The expression of these genes in 36 tissue samples and 15 embryo/larva samples under normal physiological conditions was examined by qRT-PCR, and their expression stabilities were evaluated using three statistic algorithms, geNorm, NormFinder, and comparative ∆Ct method. Similar results were obtained by the three approaches for the most and the least stably expressed genes. Final comprehensive ranking for the 12 genes combing the results from the three programs showed that, for different tissues, DEAD-box RNA helicase (HELI), ubiquitin (UBQ), and 60S ribosomal protein L16 (RPL16) were the optimal reference genes combination, while for different embryo/larva stages, gene set containing Cytochrome B (CB), Cytochrome C (CC), Histone H3.3 (His3.3), and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were recommended for qRT-PCR normalization. ACT was among the least stable genes for both adult tissues and embryos/larvae.ConclusionsThis work constitutes the first systematic analysis on reference genes selection for qRT-PCR normalization in scallop under normal conditions. The suitable reference genes we recommended will be useful for the identification of genes related to biological processes in Yesso scallop, and also in the reference gene selection for other scallop or bivalve species.

Highlights

  • Gene expression studies are increasingly important in identifying genes, pathways, and networks underlying cellular and developmental processes

  • Orthologs of 12 commonly used reference genes were selected from the transcriptome dataset of Yesso scallop, and their expression stabilities among adult tissues and embryos/larvae were evaluated

  • For optimal reference gene selection, quantitative reverse transcription PCR (qRT-PCR) data of the 12 candidate reference genes were analyzed using three statistical algorithms, geNorm, NormFinder, and the comparative ∆Ct method, which all were commonly used in reference gene evaluation [18,19,49,50]

Read more

Summary

Introduction

Gene expression studies are increasingly important in identifying genes, pathways, and networks underlying cellular and developmental processes. Despite the increasing application of real-time quantitative reverse transcription PCR (qRT-PCR) in gene expression studies on bivalve species, little research has been conducted on reference gene selection which is critical for reliable and accurate qRT-PCR analysis. Results: In this study, 12 commonly used candidate reference genes were selected from the transcriptome data of Yesso scallop (Patinopecten yessoensis) for suitable qRT-PCR reference genes identification. The expression of these genes in 36 tissue samples and 15 embryo/larva samples under normal physiological conditions was examined by qRT-PCR, and their expression stabilities were evaluated using three statistic algorithms, geNorm, NormFinder, and comparative ∆Ct method. The suitable reference genes we recommended will be useful for the identification of genes related to biological processes in Yesso scallop, and in the reference gene selection for other scallop or bivalve species

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call