Abstract

Indonesia has diverse topographical conditions that result in Indonesia having a unique climate. One of the unique climate elements to be studied is rainfall, because rainfall has a different pattern in each region, this different rainfall pattern is caused by several climate phenomena factors that affect the rainfall pattern, including El-Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Madden Julian Oscillation (MJO). Medan City is the capital of North Sumatra province which is one of the areas in the flood-prone category in North Sumatra, where the factor of flooding is due to rainfall events in a long period of time, so the author wants to know which climatic phenomena factors can affect rainfall events in Medan city by using Machine Learning technology through the Matlab application, where in this study has a method by forming four combination models, namely the combination of the influence of IOD, SOI and MJO; second combination of IOD and SOI; third combination of SOI and MJO; and fourth combination of MJO and IOD, these four combinations will be the rainfall value of the four models. Furthermore, the rainfall value of the model is compared with the observed rainfall value and verification test using Mean Absolute Error (MAE) and correlation. Then the calculation of the comparison between the four rainfall models with the observed rainfall obtained the lowest MAE value during the SOI and MJO phenomenon of 15.0 mm and the highest correlation value during the IOD and SOI and SOI and MJO phenomena. So it is concluded that the combination of SOI and MJO has the best verification value. This shows that based on Machine Learning modeling, the model shown as the best predictor in Medan city is when the model combination consists of SOI and MJO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.