Abstract
Protein content (PC) in rice endosperm plays an important role in determining rice grain quality. However, the genetic mechanism underlying grain PC remains unclear. In order to better understand the genetic basis of this trait, a chromosome segment substitution line (CSSL) population derived from the cross of Sasanishiki/Habataki was employed for genetic analysis and gene mapping. In three environments, seven quantitative trait loci in total were identified, of which only qPC-1 was repeatedly detected across three environments, and qPC-10 was identified in two environments; the other five QTLs were detected in one environment. In order to fine-map qPC-1, a CSSL with low PC, SL402, harboring qPC-1, was crossed with Sasanishiki to develop F2 and F3 segregation populations. qPC-1 was finally delimited to a 41-kb DNA region on chromosome 1. Storage protein component analysis indicated that the allele from Habataki on qPC-1 can significantly decrease the glutelin content, consequently leading to the decrease in PC. These results provide an important aid for map-based cloning of qPC-1, and the markers linked to qPC-1 could be applied to rice quality improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.