Abstract
A spectrum of disease severity has been observed in patients with Lyme disease, with approximately 60% of untreated individuals developing arthritis. The murine model of Lyme disease has provided strong evidence that the genetic composition of the host influences the severity of arthritis following infection with Borrelia burgdorferi: infected C3H mice develop severe arthritis while infected C57BL/6N mice develop mild arthritis. Regions of the mouse genome controlling arthritis severity and humoral responses during B. burgdorferi infection were identified in the F2 intercross generation of C3H/HeNCr and C57BL/6NCr mice. Rear ankle swelling measurements identified quantitative trait loci (QTL) on chromosomes 4 and 5, while histopathological scoring identified QTL on a unique region of chromosome 5 and on chromosome 11. The identification of QTL unique for ankle swelling or histopathological severity suggests that processes under distinct genetic control are responsible for these two manifestations of Lyme arthritis. Additional QTL that control the levels of circulating Igs induced by B. burgdorferi infection were identified on chromosomes 6, 9, 11, 12, and 17. Interestingly, the magnitude of the humoral response was not correlated with the severity of arthritis in infected F2 mice. This work defines several genetic loci that regulate either the severity of arthritis or the magnitude of humoral responses to B. burgdorferi infection in mice, with implications toward understanding the host-pathogen interactions involved in disease development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.