Abstract

Quantitative trait loci (QTL) for Cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.) were identified, using 103 recombinant inbred lines (RILs) derived from a cross of Ch × Sh at germination and seedling stages. The traits of germination, growth and physiology were measured. Cd tolerance indexes (TI) were calculated for plants under Cd stress relative to control conditions. Cd concentrations in both root and shoot were determined and the amount of Cd accumulation and translocation calculated. The phenotypic variation of the above traits showed a continuous distribution pattern among the RILs. Twenty-six QTLs were detected, (16 of which were designated for the traits under the control and Cd stress, 8 for Cd tolerance and 2 for root Cd accumulation). These 26 QTLs individually could explain 7.97–60.16% of the phenotypic variation. Fourteen QTLs were positive (with the additive effects coming from Ch) while the remaining 12 QTLs were negative (with the additive effects contributed by Sh). No QTL were detected in the same region on the chromosomes of wheat. The results indicated that genetic mechanisms controlling the traits of Cd tolerance were independent from each other. Therefore, in this study, the properties of Cd tolerance and accumulation showed to be independent traits in wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call