Abstract

Identifying QTL associated with soybean seed quality traits from a diverse GWAS panel cultivated in Canadian and Ukrainian mega-environments may facilitate future cultivar development for foreign markets. Understanding the complex genetic basis of seed quality traits for soybean in the mega-environments (MEs) is critical for developing a marker-assisted selection program that will lead to breeding superior cultivars adapted to specific regions. This study aimed to analyze the accumulation of 14 soybean seed quality traits in Canadian ME and two seed quality traits in Ukrainian ME and identify associated ME specific quantitative trait loci (QTLSP) and ME universal QTL (QTLU) for protein and oil using a genome-wide association study (GWAS) panel consisting of 184 soybean genotypes. The panel was planted in three locations in Canada and two locations in Ukraine in 2018 and 2019. Genotype plus genotype-by-environment biplot analysis was conducted to assess the accumulation of individual seed compounds across different locations. The protein accumulation was high in the Canadian ME and low in the Ukrainian ME, whereas the oil concentration showed the opposite trends between the two MEs. No QTLU were identified across the MEs for protein and oil concentrations. In contrast, nine Canadian QTLSP for protein were identified on various chromosomes, which were co-located with QTL controlling other traits identified in the Canadian ME. The lack of common QTLU for protein and oil suggests that it may be necessary to use QTLSP associated with these traits separately for the Canadian and Ukrainian ME. Additional Ukrainian data for seed compounds other than oil and protein are required to identify novel QTLSP and QTLU for such traits for the individual or combined Canadian and Ukrainian MEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call