Abstract

Grain yield is the primary trait of interest in maize breeding programs. Worldwide, drought is the most pervasive limitation to the achievement of yield potential in maize. Drought tolerance of maize has been considerably improved through conventional breeding. Traditional breeding methods have numerous limitations, so development of new molecular genetics techniques could help in elucidation of genetic basis of drought tolerance .In order to map QTLs underlying yield and yield components under drought 116 F3 families of DTP79xB73 cross were evaluated in the field trials. Phenotypic correlations calculated using Pearson?s coefficients were high and significant. QTL detection was performed using composite interval mapping option in WinQTL Cartographer v 2.5. Over all nine traits 45 QTLs were detected: five for grain yield per plant and 40 for eight yield components. These QTLs were distributed on all chromosomes except on chromosome 9. Percent of phenotypic variability determined for the identified QTLs for all the traits was in the range from 27.46 to 95.85%. Different types of gene action were found for the QTLs identified for analyzed traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call