Abstract

Acinetobacter baumannii, the gram-negative bacteria emerged as an extremely critical pathogen causing nosocomial and different kinds of infections. A. baumannii exhibit resistivity towards various classes of antibiotics that shows that there is a dire need to search more drug targets by exploiting the full genome of the bacteria. In doing so, a strategy is made with the combination of computational biology, pathogen informatics and cheminformatics. Comparative genomics analysis, modeling and docking studies have been performed for the prediction of non-host essential genes and novel drug candidates against A. baumannii. Among 37 unique and 82 common metabolic pathways, 92 genes were predicted as non-host genes. Similarly, using homology search between A. baumannii genome and essential genes of different bacteria, 293 genes were predicted as essential genes of A. baumannii. Among these predicted non-host and essential genes, 86 genes were predicted as non-host essential genes which could serve as potential novel drug and vaccine targets. Additional drug-target like physicochemical properties were estimated such as the molecular weight, subcellular localization and druggability potential. On the structural part, the crystal structures of all the non-host essential genes of A. baumannii were found except the three genes. Out of these three, a homology model of Undecaprenyl-diphosphatase was built using a PDB template by MODELLER [version 9.18]. The quality of the model was assessed by the ProSA and RAMPAGE. The built model was subjected as a receptor for the molecular docking with Adenosine diphosphate (ADP) as a ligand. The molecular docking was performed by AutoDock4 and the best conformation with lowest binding energy (−4.39 kcal/mol) was obtained. The LigPlot was used to identify the close interactions between the ligand the receptor's residues. This study will further aid for the selection of putative inhibitors against a novel drug target identified against A. baumannii and hence could lead to the better therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.