Abstract
Discharge of the endocrine disrupting compound bisphenol A (BPA) with wastewater treatment plant (WWTP) effluents into surface waters results in deleterious effects on aquatic life. Sphingobium sp. BiD32 was previously isolated from activated sludge based on its ability to degrade BPA. This study investigated BPA metabolism by Sphingobium sp. BiD32 using label-free quantitative proteomics. The genome of Sphingobium sp. BiD32 was sequenced to provide a species-specific platform for optimal protein identification. The bacterial proteomes of Sphingobium sp. BiD32 in the presence and absence of BPA were identified and quantified. A total of 2155 proteins were identified; 1174 of these proteins were quantified, and 184 of these proteins had a statistically significant change in abundance in response to the presence/absence of BPA (p ≤ 0.05). Proteins encoded by genes previously identified to be responsible for protocatechuate degradation were upregulated in the presence of BPA. The analysis of the metabolites from BPA degradation by Sphingobium sp. BiD32 detected a hydroxylated metabolite. A novel p-hydroxybenzoate hydroxylase enzyme detected by proteomics was implicated in the metabolic pathway associated with the detected metabolite. This enzyme is hypothesized to be involved in BPA degradation by Sphingobium sp. BiD32, and may serve as a future genetic marker for BPA degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.