Abstract

Breast cancer (BC) is one of the most prevalent cancers in the world and is one of the major reasons for the death of women worldwide. BC is majorly categorized based on the presence or absence of three cell receptors ER, PR and HER2. The latest treatment for BC involves interfering with the production and action of hormones such as estrogen and progesterone. These hormones bind with receptors such as ER and PR and enhance the growth and proliferation of the BC cells. Although the available are effective, the increasing resistance and side effects related to hormonal imbalance are significant and hence there is a need for designing. On the other hand, plant-derivative products have gained a lot of popularity for their promising anti-cancerous activities. Polyphenols are one such group of plant derivatives that have proven to be useful against cancer. In the present study, an in-silico approach was used to search for a polyphenol that can inhibit ER. In this work, a total of 750 polyphenols were taken into consideration. This number was narrowed down to 55, based on their ADMET properties. These 55 polyphenols were then docked to the receptors, ER, PR and HER2. The molecular docking was followed by Molecular Dynamics (MD) simulations. Based on molecular docking and MD simulation results it was concluded that Pseudobaptigenin has the potential to be an inhibitor of ER, PR and HER2. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call