Abstract

The proteins with the BTB domain play an important role in the processes of activation and repression of transcription. Interestingly, BTB-containing proteins are widely distributed only among higher eukaryotes. Many BTB-containing proteins are transcriptional factors involved in a wide range of developmental processes. One of the key regulators of early development is the BTB-containing protein Ttk (tramtrack), which is able to interact with the Drosophila nucleosome remodeling and histone deacetylation (dNuRD) complex. Ttk69 directly interacts with two protein components of the dNuRD complex, dMi-2 and MEP1. It can be assumed that Ttk69 represses some target genes by remodeling chromatin structure through the recruitment of the dNuRD complex. However, it is still unknown what provides for specific recruitment of Ttk to chromatin in the process of negative/positive regulation of a target gene expression. Although Ttk69 has DNA-binding activity, no extended specific motif has been identified. The purpose of this study was to find proteins that can participate in the recruitment of Ttk to regulatory elements. To identify Ttk partner proteins, screening in the yeast two-hybrid system was performed against a collection of proteins with clusters of C2H2 domains, which bind effectively and specifically to sites on chromatin. As a results, the CG10321 and CG1792 proteins were identified as potential DNA-binding partners of Ttk. We suppose that the CG10321 and CG1792 proteins provide specificity for the recruitment of Ttk and, as a result, of the NuRD-complex to the genome regulatory elements. We found that the Ttk protein is able to interact with the MEP1 and ZnF proteins at once.

Highlights

  • The genome of higher eukaryotes is a complex, but at the same time flexible and tightly regulated system

  • Maksimenko fusion with a Gal4 DNA binding domain (DBD) along with ZnF proteins fused to the Gal4 activation domain (AD)

  • Being co-expressed in yeast, the two associating proteins reconstitute the function of the transcription factor GAL4 that activates the his3 gene in the yeast strain pJ69-4A, which is an auxotroph for histidine (Fig. 1, a)

Read more

Summary

Objectives

The purpose of this study was to find proteins that can participate in the recruitment of Ttk to regulatory elements.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.