Abstract
Body water homeostasis is maintained by the correct balance between water intake and water loss through urine, faeces, sweat and breath. It is known that elevated circulating levels of the antidiuretic hormone vasopressin decrease urine volume to prevent excessive water loss from the body. Vasopressin/cAMP/protein kinase A (PKA) signalling is the canonical pathway in renal collecting ducts for phosphorylating aquaporin-2 (AQP2) water channels, which leads to the reabsorption of water from urine via AQP2. Although recent omics data have verified various downstream targets of PKA, crucial regulators that mediate PKA-induced AQP2 phosphorylation remain unknown, mainly because vasopressin is usually used to activate PKA as a positive control. Vasopressin is extremely potent and phosphorylates various PKA substrates non-specifically, making it difficult to narrow down the candidate mediators responsible for AQP2 phosphorylation. The intracellular localization of PKA is tightly regulated by its scaffold proteins, also known as A-kinase anchoring proteins (AKAPs). Furthermore, each AKAP has a target domain that determines its intracellular localization, enabling the creation of a local PKA signalling network. Although vasopressin activates most PKAs independently of their intracellular localization, some chemical compounds preferentially act on PKAs localized on AQP2-containing vesicles while simultaneously phosphorylating AQP2 and its surrounding PKA substrates. Immunoprecipitation with antibodies against phosphorylated PKA substrates followed by mass spectrometry analysis revealed that the PKA substrate in proximity to AQP2 was lipopolysaccharide-responsive and beige-like anchor (LRBA). Furthermore, Lrba knockout studies revealed that LRBA was required for vasopressin-induced AQP2 phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.