Abstract

The candidate tumor suppressor gene RASSF1A (Ras-association domain family 1, isoform A) is inactivated in many types of adult and childhood cancers. However, the mechanisms by which RASSF1A exerts tumor suppressive functions have yet to be elucidated. In this report, we sought to identify candidate proteins that interact with RASSF1A using proteomic screening. Using peptide mass fingerprinting, we identified protein arginine N-methyltransferase 5 (PRMT5), a type II protein arginine N-methyltransferase that monomethylates and symmetrically dimethylates arginine residues, as a novel protein that interacts with RASSF1A. The association between the two proteins was confirmed by co-immunoprecipitation and immunofluorescence staining. Co-expressing RASSF1A and PRMT5 led to a redistribution of PRMT5 from the cytosol to stabilized microtubules, where RASSF1A and PRMT5 became co-localized. Our results demonstrate that PRMT5 translocates to bundled microtubules on stabilization by RASSF1A expression. Our results show that the tumor suppressor RASSF1A interacts with PRMT5 in vivo and in vitro. Notably, this is the first demonstration of RASSF1A-dependent microtubule recruitment of PRMT5, suggesting a novel role for RASSF1A in the anchoring of cytosolic PRMT5 to microtubules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call