Abstract
Subolesin/akirin is a protective antigen that is highly conserved across hematophagous vector species and is therefore potentially useful for the development of a universal vaccine for vector control, including soft ticks. Recent results have shown that in Ornithodoros erraticus and O. moubata soft ticks, RNAi-mediated subolesin gene knockdown inhibits tick oviposition and fertility by more than 90%; however, vaccination with recombinant subolesins resulted in remarkably low protective efficacies (5–24.5% reduction in oviposition). Here we report that vaccination with subolesin recombinants induces non-protective antibodies mainly directed against immunodominant linear B-cell epitopes located on highly structured regions of the subolesin protein, probably unrelated to its biological activity, while leaving the unstructured/disordered regions unrecognized. Accordingly, for a new vaccine trial we designed four synthetic peptides (OE1, OE2, OM1 and OM2) from the unrecognized/disordered regions of the Ornithodoros subolesin sequences and coupled them to keyhole limpet haemocyanin (KLH). These KLH-peptide conjugates induced the synthesis of antibodies that recognized linear B-cell epitopes located on the unstructured loops of the subolesin protein and provided up to 70.1% and 83.1% vaccine efficacies in O. erraticus and O. moubata, respectively. These results show that the protective effect of subolesin-based vaccines is highly dependent on the particular epitope recognized by antibodies on the subolesin sequence and strongly suggest that the biological activity of subolesin is exerted through its unstructured regions. The results reported here contribute to our understanding of the mechanism of protection of subolesin-based vaccines and reveal novel protective peptides that could be included among the array of candidate antigens useful for developing anti-vector vaccines based on subolesin/akirin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.