Abstract
Stromelysin-1, matrix metalloproteinase-3 (MMP-3), is an important endopeptidase selectively expressed by somatic cells in organ tissues. The renal tubulointerstitium, for example, comprises tubular epithelium and interstitial fibroblasts forming the principal mass of the kidney. We observed that mRNA encoding stromelysin-1 is detectable in murine renal fibroblasts, but not in proximal tubular epithelium. Transcripts measured by RNase protection assay in renal fibroblasts increase following exposure to phorbol ester, and thereafter, activated stromelysin-1 protein can be detected in culture media by Western blotting. A 6.4 Kb genomic clone containing the putative stromelysin-1 promoter was isolated and a relevant 2.1 Kb PstI restriction fragment including 2.1 Kb of the immediate 5'-flanking region was sequenced on both strands. Two transcriptional start sites were identified by primer extension; the major start site corresponded to a previously established position in the rat promoter, and a second undescribed minor transcriptional start site was located 16 bp upstream of the primary site. A HiNF-A chromatin-activating element at -106 bp was found in the early promoter region of pR336 and an active AP-1 site at -72 bp with an Ets/PEA-3 motif at -203 bp was suggested by transient transfection of luciferase minigenes into renal fibroblasts responsive to phorbol ester. This Ets element was identical to a site in the early promoter of the fibroblast-specific gene FSP1. A baseline enhancement in activity of pR336 in fibroblasts was further observed with the addition of 5' flanking sequence out to -1980 bp. This additional region of flanking sequence contains two modular regions: one of multiple PEA-3 elements between -684 bp and -1955 bp and a second region between -1929 bp and -1980 bps containing a second AP-1 site at -1929 bp, a MBF-1/ MEP-1 metal binding site, and a PPAR peroxisome proliferator element at -1950 bp. Our findings implicate a gene structure with expected activity in a mesenchymal phenotype. The PKC-dependent regulation of the stromelysin-1 gene supports the notion that it may be modulated during inflammation or tissue remodeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.