Abstract

Proteins from crown gall tissue labelled in vivo with [ 32P]orthophosphate were analysed by SDS-polyacrylamide gel electrophoresis. The major phosphorylated proteins were of 50.6 and 48.3 kDa, with minor bands at 80.1, 73.9, 68, 40.4, 30, 21.5, 20.2 and 15.2 kDa. Partial hydrolysates of total 32P-labelled proteins were analysed in a number of ways. A two-dimensional separation on paper by electrophoresis in pyridine/acetic acid at pH 3.5 followed by chromatography in isobutyric acid/0.5 M ammonia revealed radioactive spots coincident with phosphoserine and phosphothreonine markers and only partially coincident with the phosphotyrosine marker. Two-dimensional electrophoresis at pH 1.9 followed by pH 3.5, however, unequivocally showed the presence of phosphotyrosine after elution of the phosphotyrosine marker. Phosphoserine, phosphothreonine and phosphotyrosine were present in the ratio 89.4:8.5:2.1. This is a much higher level of phosphotyrosine than normally found in animal cells. The three phosphoamino acids were confirmed by chromatography with authentic samples in four solvent systems on cellulose or silica TLC, and by dansylation followed by silica TLC. The radioactive compound running almost coincident with phosphotyrosine on two-way electrophoresis, pH 3.5, followed by chromatography in isobutyric acid/0.5 M ammonia was identified tentatively as uridine 5′-monophosphate on the basis of electrophoretic and chromatographic behaviour. Further experiments to compare normal (growing and non-growing) tobacco callus and T37-transformed cells did not give markedly different ratios of the three phosphoamino acids, although the rapidly-growing normal tobacco (i.e., plus cytokinin) appeared to have a greater abundance of the two minor phosphoamino acids (approx. 2-times). The lack of effect of transformation is in contrast to animal cells where transformation results in a 10-fold increase in the virally affected cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.