Abstract

Summary Managed aquifer recharge is gaining importance as a practice to bank and treat surface water for drinking water production. Neon (Ne) concentrations were analysed at four different recharge sites in and near Berlin, where groundwater is recharged directly from surface water courses, either by near-natural bank filtration, induced bank filtration or engineered basin recharge. Neon concentrations in excess of saturation (ΔNe) were used to identify excess air in the infiltrates. Excess air concentrations were around saturation at the near-natural bank filtration site, where river water infiltrates through a permeable river bed into a confined aquifer under completely saturated conditions. At two induced unconfined bank filtration sites, samples generally contained excess air (up to 60% ΔNe). Highest excess air concentrations (up to 81% ΔNe) were encountered at the engineered basin recharge site. The degree of water table fluctuations, the water saturation of the sediments in the infiltration zone and the presence of a confining layer affect the formation of excess air. Excess air can only be used to trace bank filtrate or artificially recharged water in a setting where the ambient groundwater in the near vicinity of production wells is not affected by large water-table fluctuations. Nevertheless, excess air concentrations provide valuable additional information on the type of recharge (saturated or unsaturated, degree of water table fluctuations).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.