Abstract
Since solely using statistical process control (SPC) and engineering process control (EPC) cannot optimally control the manufacturing process, lots of studies have been devoted to the integrated use of SPC and EPC. The majority of these studies have reported that the integrated approach has better performance than that by using only SPC or EPC. Almost all these studies have assumed that the assignable causes of process disturbance can be identified and removed by SPC techniques. However, these techniques are typically time-consuming and thus make the search hard to implement in practice. In this paper, the EPC and neural network scheme were integrated in identifying the assignable causes of the underlying disturbance. For finding the appropriate setup of the networks' parameters, such as the number of hidden nodes and the suitable input variables, the all-possible-regression selection procedure is applied. For comparison, two SPC charts, Shewhart and cumulative sum (Cusum) charts were also developed for the same data sets. As the results reveal, the proposed approaches outperform the other methods and the shift of disturbance can be identified successfully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.