Abstract

Protein aggregation of monoclonal antibodies (mAbs) is a common phenomenon associated with the production of these biopharmaceuticals. These aggregates can lead to adverse side effects in patients upon administration, thus expensive downstream processing steps to remove the higher molecular weight species are inevitable. A preferable approach is to reduce the level of aggregation during bioprocessing by a careful adjustment of critical process parameters. Recently, new analytical methods enabled characterization of mAb aggregation during bioprocessing of mammalian cells. Furthermore, rapid and efficient bioprocess optimization has been performed using design of experiments (DoE) strategies. In this work, we describe a DoE-based approach for the analysis of process parameters and cell culture additives influencing protein aggregation in Chinese hamster ovary (CHO) cell cultures. Important bioprocess variables influencing the aggregation of mAb and host cell proteins were identified in initial screening experiments. Response surface modeling was further applied in order to find optimal conditions for the reduction of protein aggregation during cell culture. It turned out that a temperature-shift to 31 °C, osmolality above 420 mOsm/kg, agitation at 100 rpm and 0.04% (w/v) antifoam significantly reduced the level of aggregates without substantial detrimental effects on cell culture performance in our model system. Finally, the aggregation reducing conditions were verified and applied to another production system using a different bioprocess medium and another CHO cell line producing another mAb. Our results show that protein aggregation can be controlled during cell culture and helps to improve bioprocessing of mAbs, by giving insights into the protein aggregation at its origin in mammalian cell culture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call