Abstract
Deinococcus radiodurans possesses a DNA damage response mechanism that acts via the PprI protein to induce RecA and PprA proteins, both of which are necessary in conferring extreme radioresistance. In an effort to further delineate the nature of the DNA damage response mechanism in D. radiodurans, we set out to identify novel components of the PprI-dependent signal transduction pathway in response to radiation stress. Here we demonstrate the discovery of a novel regulatory protein, PprM (a modulator of the PprI-dependent DNA damage response), which is a homolog of cold shock protein (Csp). Disruption of the pprM gene rendered D. radiodurans significantly sensitive to gamma-rays. PprM regulates the induction of PprA but not that of RecA. PprM belongs in a distinct clade of a subfamily together with Csp homologs from D. geothermalis and Thermus thermophilus. Purified PprM is present as a homodimer under physiological conditions, as the case with Escherichia coli CspD. The pprA pprM double-disruptant strain exhibited higher sensitivity than the pprA or pprM single disruptant strains, suggesting that PprM regulates other hitherto unknown protein(s) important for radioresistance besides PprA. This study strongly suggests that PprM is involved in the radiation response mediated by PprI in D. radiodurans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.