Abstract

The study was aimed to explore the underlying mechanisms and identify the potential target genes and key miRNAs for acute myeloid leukemia (AML) treatment by bioinformatics analysis. The microarray data of GSE9476 were downloaded from Gene Expression Omnibus database. A total of 64 samples, including 26 AML and 38 normal samples, were used to identify differentially expressed genes (DEGs) between AML and normal samples. The functional enrichment analysis was performed, and protein-protein interaction (PPI) network of the DEGs was constructed by Cytoscape software. Besides, the target miRNAs for DEGs were identified. Totally, 323 DEGs were identified, including 87 up-regulated and 236 down-regulated genes. Not only up-regulated genes but also down-regulated genes were related to hematopoietic-related functions. Besides, down-regulated genes were also enriched in primary immunodeficiency pathway. Tumor necrosis factor (TNF), interleukin 7 receptor (IL7R), lymphocyte-specific protein tyrosine kinase (LCK), CD79a molecule and immunoglobulin-associated alpha (CD79A) were identified in these functions. TNF and LCK were hub nodes in PPI networks. miR-124 and miR-181 were important miRNAs in this study. The hematopoietic-related functions and primary immunodeficiency pathway may be associated with AML development. Genes, such as TNF, IL7R, LCK and CD79A, may be potential therapeutic target genes for AML, and miR-124 and miR-181 may be key miRNAs in AML development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call