Abstract

The endoplasmic reticulum (ER) has been considered as the key site of protein biosynthesis and maturation in the eukaryotic cell. In recent years, the sequence at the N-terminal region of translated protein has shown a particular emphasis as a signal responsible for site-specific translocation mediated by post-translational modification. Once the native conformation is not achieved, the degradation pathway is activated, and therefore the restoration of the homeostasis of ER function in UPR pathway is initiated. One of the transmembrane proteins, PKR-like ER kinase (PERK) plays a key role in the activation of UPR through the inhibition of the translation process, thus preventing the cells from apoptosis due to chronic ER stress. Dysregulation of the neuronal proteostasis often results in neuronal dysfunction and its crucially associated neurodegenerative diseases or its manifestation of neuropathic pain. The correlation between ER stress and its associated signaling cascade, namely UPR, is well established in context of neuropathological modifications. This furthermore suggests that the proteins of the signaling cascade such as PERK can serve as a potential target during the onset of neuronal damage. The aim of this study was to identify the potential phytocompounds by evaluating the physicochemical properties, Lipinski screening, ADMET and toxicity properties of the selected phytocompounds by using SwissADME, MolInspiration and pKCSM webservers, which could establish a comparatively better affinity and binding energy than the control drug as GSK2606414 in set up the treatment of the neuronal diseases through molecular docking via PyRx and validating their structural stability through simulation using the Sybyl software for over100ns. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call